lunes, 5 de diciembre de 2011

BIG-BANG

En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de unasingularidad espaciotemporal. Técnicamente, este modelo se basa en una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo (cuantificada en la ley de Hubble), como en un sentido más general para referirse alparadigma cosmológico que explica el origen y la evolución del mismo.



Descripción del Big Bang

El Universo ilustrado en tres dimensiones espaciales y una dimensión temporal.
Michio Kaku ha señalado cierta paradoja en la denominación big bang(gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo, habría sido el mismo big bang lo que habría generado las dimensiones desde unasingularidad; tampoco es exactamente una explosión en el sentido propio del término ya que no se propagó fuera de sí mismo.
Basándose en medidas de la expansión del Universo utilizando observaciones de las supernovas tipo 1a, en función de la variación de la temperatura en diferentes escalas en la radiación de fondo de microondas y en función de la correlación de las galaxias, la edad del Universo es de aproximadamente 13,7 ± 0,2 miles de millones de años. Es notable el hecho de que tres mediciones independientes sean consistentes, por lo que se consideran una fuerte evidencia del llamado modelo de concordancia que describe la naturaleza detallada del Universo.
El universo en sus primeros momentos estaba lleno homogénea eisótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de faseanálogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.
Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el Universo se expandiese de formaexponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en forma relativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarksy los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron lasimetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde, protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente dehidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Ésta es la radiación de fondo de microondas.
Al pasar el tiempo, algunas regiones ligeramente más densas de la materia casi uniformemente distribuida crecieron gravitacionalmente, haciéndose más densas, formando nubes, estrellas, galaxias y el resto de las estructuras astronómicas que actualmente se observan. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el Universo. Los tres tipos posibles se denominan materia oscura fríamateria oscura caliente y materia bariónica. Las mejores medidas disponibles (provenientes del WMAP) muestran que la forma más común de materia en el universo es la materia oscura fría. Los otros dos tipos de materia sólo representarían el 20 por ciento de la materia del Universo.
El Universo actual parece estar dominado por una forma misteriosa de energía conocida como energía oscura. Aproximadamente el 70 por ciento de la densidad de energía del universo actual está en esa forma. Una de las propiedades características de este componente del universo es el hecho de que provoca que la expansión del universo varíe de una relación lineal entre velocidad y distancia, haciendo que elespacio-tiempo se expanda más rápidamente que lo esperado a grandes distancias. La energía oscura toma la forma de una constante cosmológica en las ecuaciones de campo de Einstein de la relatividad general, pero los detalles de esta ecuación de estado y su relación con el modelo estándar de la física de partículas continúan siendo investigados tanto en el ámbito de la física teórica como por medio de observaciones.
Más misterios aparecen cuando se investiga más cerca del principio, cuando las energías de las partículas eran más altas de lo que ahora se puede estudiar mediante experimentos. No hay ningún modelo físico convincente para el primer 10-33 segundo del universo, antes del cambio de fase que forma parte de la teoría de la gran unificación. En el "primer instante", la teoría gravitacional de Einstein predice unasingularidad gravitacional en donde las densidades son infinitas. Para resolver esta paradoja física, hace falta una teoría de la gravedad cuántica. La comprensión de este período de la historia del universo figura entre los mayores problemas no resueltos de la física.

Base teórica

cosmologia

Cosmología, del griego κοσμολογία (‘cosmologuía’, compuesto por κόσμος, /kosmos/, ‘cosmos, orden’, y λογια, /loguía/, ‘tratado, estudio’) es el estudio del universo en su conjunto, en el que se incluyen teorías sobre su origen, su evolución, su estructura a gran escala y su futuro.

Aunque la palabra «cosmología» fue utilizada por primera vez en 1730 en la Cosmología generalis de Christian Wolff, el estudio científico del universo tiene una larga historia, que involucra a la física, la astronomía, la filosofía, el esoterismo y la religión.
El nacimiento de la cosmología moderna puede situarse en 1700 con la hipótesis de que las estrellas de la Vía Láctea (la franja de luz blanca visible en las noches serenas de un extremo a otro de la bóveda celeste), pertenecen a un sistema estelar de forma discoidal, del cual el propio Sol forma parte; y que otros cuerpos nebulosos visibles con el telescopio son sistemas estelares similares a la Vía Láctea, pero muy lejanos.

quasares

Un cuásar1 o quásar (acrónimo en inglés de quasi-stellar radio source) es una fuenteastronómica de energía electromagnética, que incluye radiofrecuencias y luz visible.
En 2007, el consenso científico dijo que estos objetos están extremadamente lejos, lo que explica su corrimiento al rojo alto, y son extremadamente luminosos, lo que explica por qué se pueden ver a pesar de su distancia, y muy compactos, lo que explica por qué pueden cambiar de brillo con rapidez. Se cree que son núcleos activos de galaxias jóvenes en formación.
Los cuásares visibles muestran un desplazamiento al rojo muy alto. El consenso científico es que esto es un efecto de la expansión métrica del universo entre los quasares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los quasares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los cuásares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernovas y brotes de rayos gamma. Los cuásares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de un billón de soles.
En un principio se supuso que los objetos casi estelares o cuásares eran agujeros blancos aunque el avance del estudio de su formación y características ha descartado tal supuesto.2
En telescopios ópticos, la mayoría de los cuásares aparecen como simples puntos de luz, aunque algunos parecen ser los centros degalaxias activas. La mayoría de los quasares están demasiado lejos para ser visto por telescopios pequeños, pero el 3C 273, con unamagnitud aparente de 12,9 es una excepción. A una distancia de 2.440 millones de años luz, es uno de los objetos más lejanos que se pueden observar directamente con un equipo amateur.
Algunos quasares muestran cambios rápidos de luminosidad, lo que implica que son pequeños, ya que un objeto no puede cambiar más rápido que el tiempo que tarda la luz en viajar desde un extremo al otro. El corrimiento al rojo más alto conocido de un cuásar o quasar es de 6,4.3
Se cree que los quasares están alimentados por la acreción de materia de agujeros negros supermasivos en el núcleo de galaxias lejanas, convirtiéndolos en versiones muy luminosas de una clase general de objetos conocida como galaxias activas. No se conoce el mecanismo que parece explicar la emisión de la gran cantidad de energía y su variabilidad rápida. El conocimiento de los cuásares ha avanzado muy rápidamente, aunque no hay un consenso claro sobre sus orígenes.



nebulosa planetaria


Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado, expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas en los últimos momentos de sus vidas.1
El nombre se debe a que sus descubridores, en el siglo XVIII,2 observaron que su aparencia era similar a los planetas gigantes vistos a través de los telescopios ópticos de la época, aunque realmente no tienen ninguna relación con los planetas.3 Se trata de un fenómeno relativamente breve en términos astronómicos, que dura del orden de las decenas de miles de años (el tiempo de vida de una estrella común ronda los diez mil millones de años).4
Al final de la vida de las estrellas que alcanzan la fase de gigante roja, las capas exteriores de la estrella son expelidas debido a pulsaciones y a intensos vientos estelares. Tras la expulsión de estas capas, subsiste un pequeño núcleo de la estrella, el cual se encuentra a una grantemperatura y brilla de manera intensa. La radiación ultravioleta emitida por este núcleo ioniza las capas externas que la estrella había expulsado.1
Las nebulosas planetarias son objetos de gran importancia en astronomía, debido a que desempeñan un papel crucial en la evolución química de las galaxias, devolviendo al medio interestelar metales pesados y otros productos de la nucleosíntesis de las estrellas (comocarbononitrógenooxígeno y calcio). En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.5
Las imágenes tomadas por el telescopio espacial Hubble han revelado que muchas nebulosas planetarias presentan morfologías extremadamente complejas.6 7 Solamente en torno a un quinto de ellas muestran formas más o menos esféricas.8 El mecanismo que produce esta amplia gama de formas no se comprende todavía muy bien, aunque se cree que las estrellas binarias centrales,9 los vientos estelares10 y los campos magnéticos11 podrían ejercer un papel importante.

agujeros negros


Un agujero negro1 u hoyo negro2 es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que genera uncampo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, pueden escapar de dicha región.
La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidadenvuelta por tu hermana, llamada horizonte de sucesos. Esto es una consecuencia de lasecuaciones de campo del científico David Marín. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70Hawking,Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.3 Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esféricadeterminada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se conjetura que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hayagujeros negros supermasivos.'4 La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.

estrellas de neutrones

Una estrella de neutrones es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones yelectrones, como piones y kaones. La masa original de la supernova debe ser mayor a 9 ó 10 masas solares y menor que un cierto valor que depende de la metalicidad. Las estrellas con masas menores a 9-10 masas solares evolucionan en enanas blancas envueltas, al menos por un tiempo, por nebulosidades (nebulosas planetarias), mientras que las de masas mayores evolucionan en agujeros negros.
Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares y un radio de entre 20 y 10 km (análogamente a lo que ocurre con las enanas blancas, a mayor masa corresponde un menor radio).

estrella

 estrella es todo objeto astronómicoque brilla con luz propia. Adecuadamente, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en ungas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo, como se explica luego, cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.

Estructura estelar

Corte transversal de nuestro SolImagen:NASA
Una estrella típica se divide en núcleo, manto y atmósfera. En el núcleo es donde se producen las reacciones nucleares que generan su energía. El manto transporta dicha energía hacia la superficie y según cómo la transporte, por convección o por radiación, se dividirá en dos zonas: radiante y convectiva. Finalmente, la atmósfera es la parte más superficial de las estrellas y la única que es visible. Se divide en cromósferafotósfera ycorona solar. La atmósfera estelar es la zona más fría de las estrellas y en ellas se producen los fenómenos de eyección de materia. Pero en la corona, supone una excepción a lo dicho ya que la temperatura vuelve a aumentar hasta llegar al millón de grados por lo menos. Pero es una temperatura engañosa. En realidad esta capa es muy poco densa y está formada por partículas ionizadas altamente aceleradas por el campo magnético de la estrella. Sus grandes velocidades les confieren a esas partículas altas temperaturas.